Cycle structure of percolation on high-dimensional tori

نویسندگان

  • Remco van der Hofstad
  • Artëm Sapozhnikov
چکیده

In the past years, many properties of the critical behavior of the largest connected components on the high-dimensional torus, such as their sizes and diameter, have been established. The order of magnitude of these quantities equals the one for percolation on the complete graph or Erdős-Rényi random graph, raising the question whether the scaling limits or the largest connected components, as identified by Aldous (1997), are also equal. In this paper, we investigate the cycle structure of the largest critical components for highdimensional percolation on the torus {−br/2c, . . . , dr/2e − 1}. While percolation clusters naturally have many short cycles, we show that the long cycles, i.e., cycles that pass through the boundary of the cube of width r/4 centered around each of their vertices, have length of order r, as on the critical Erdős-Rényi random graph. On the Erdős-Rényi random graph, cycles play an essential role in the scaling limit of the large critical clusters, as identified by Addario-Berry, Broutin and Goldschmidt (2010). Our proofs crucially rely on various new estimates of probabilities of the existence of open paths in critical Bernoulli percolation on Z with constraints on their lengths. We believe these estimates are interesting in their own right.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Random graph asymptotics on high-dimensional tori

We investigate the scaling of the largest critical percolation cluster on a large d-dimensional torus, for nearest-neighbor percolation in high dimensions, or when d > 6 for sufficient spread-out percolation. We use a relatively simple coupling argument to show that this largest critical cluster is, with high probability, bounded above by a large constant times V 2/3 and below by a small consta...

متن کامل

Random graph asymptotics on high-dimensional tori II. Volume, diameter and mixing time

For critical (bond-) percolation on general high-dimensional torus, this paper answers the following questions: What is the diameter of the largest cluster? What is the mixing time of simple random walk on the largest cluster? The answer is the same as for critical Erdős-Rényi random graphs, and extends earlier results by Nachmias and Peres [35] in this setting. We further improve our bound on ...

متن کامل

Topological Compression Factors of 2-Dimensional TUC4C8(R) Lattices and Tori

We derived explicit formulae for the eccentric connectivity index and Wiener index of 2-dimensional square-octagonal TUC4C8(R) lattices with open and closed ends. New compression factors for both indices are also computed in the limit N-->∞.

متن کامل

Random subgraphs of finite graphs: II. The lace expansion and the triangle condition

In a previous paper, we defined a version of the percolation triangle condition that is suitable for the analysis of bond percolation on a finite connected transitive graph, and showed that this triangle condition implies that the percolation phase transition has many features in common with the phase transition on the complete graph. In this paper, we use a new and simplified approach to the l...

متن کامل

Random Subgraphs of Finite Graphs. Ii. the Lace Expansion and the Triangle Condition by Christian Borgs,

In a previous paper we defined a version of the percolation triangle condition that is suitable for the analysis of bond percolation on a finite connected transitive graph, and showed that this triangle condition implies that the percolation phase transition has many features in common with the phase transition on the complete graph. In this paper we use a new and simplified approach to the lac...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012